
ar
X

iv
:1

80
2.

04
90

0v
2

 [
cs

.C
R

]
 4

 A
pr

 2
01

8
1

Analysing and Patching SPEKE in ISO/IEC
Feng Hao, Roberto Metere, Siamak F. Shahandashti and Changyu Dong

Abstract—Simple Password Exponential Key Exchange
(SPEKE) is a well-known Password Authenticated Key Ex-
change (PAKE) protocol that has been used in Blackberry
phones for secure messaging and Entrust’s TruePass end-to-
end web products. It has also been included into international
standards such as ISO/IEC 11770-4 and IEEE P1363.2. In
this paper, we analyse the SPEKE protocol as specified in the
ISO/IEC and IEEE standards. We identify that the protocol is
vulnerable to two new attacks: an impersonation attack that
allows an attacker to impersonate a user without knowing the
password by launching two parallel sessions with the victim,
and a key-malleability attack that allows a man-in-the-middle
(MITM) to manipulate the session key without being detected
by the end users. Both attacks have been acknowledged by
the technical committee of ISO/IEC SC 27, and ISO/IEC
11770-4 revised as a result. We propose a patched SPEKE
called P-SPEKE and present a formal analysis in the Applied
Pi Calculus using ProVerif to show that the proposed patch
prevents both attacks. The proposed patch has been included
into the latest revision of ISO/IEC 11770-4 published in 2017.

Index Terms—password-based authenticated key exchange,
formal methods, key agreement

I. INTRODUCTION

A password-authenticated key exchange (PAKE) proto-
col aims to establish a high-entropy session key for secure
communication between two parties based on a low-entropy
secret password known to both without relying on any
external trusted parties. The idea of bootstrapping a high-
entropy secret key based on a low-entropy secret password
is counter-intuitive, and for a long time had been thought
impossible until the seminal work by Bellovin and Merrit
who proposed the first PAKE solution called Encrypted Key
Exchange (EKE) [9]. Since then, research on PAKE has
become a thriving field: many PAKE protocols have been
proposed, and some have been included into international
standards [22], [23].

However, the original EKE protocol was found to suffer
from several limitations, of which the most significant one
was the leakage about the password [26]. Motivated by
addressing the limitations, Jablon proposed another PAKE
solution called the simple password exponential key ex-
change (SPEKE) in 1996 [25]. SPEKE proves to be a more
practical protocol than EKE since it does not have the same
password leakage problem as in EKE. Although researchers
raised concerns on some other aspects of SPEKE [31],
[33] such as the possibility for an online attacker to test
multiple passwords in one go, no major flaws have been

Feng Hao, Roberto Metere and Changyu Dong are with School of
Computing, Newcastle University, United Kingdom. E-mail: {feng.hao,
r.metere2, changyu.dong}@ncl.ac.uk. Siamak F. Shahandashti is with the
Department of Computer Science, University of York, United Kindom.
Email: siamak.shahandashti@york.ac.uk. This work is supported by ERC
Starting Grant, No. 306994. Dong is supported by EPSRC EP/M013561/2.

reported. Over the years, SPEKE has been used in several
commercial applications: for example, the secure messaging
on Blackberry phones [11] and Entrust’s TruePass end-to-
end web products [16]. SPEKE has also been included into
the international standards such as IEEE P1363.2 [22] and
ISO/IEC 11770-4 [24].

Given the wide usage of SPEKE in practical applications
and its inclusion in standards, we believe a thorough
analysis of SPEKE is both necessary and important. In
this paper, we revisit SPEKE and its variants specified in
the original paper [25], the IEEE 1363.2 [22] and ISO/IEC
11770-4 [23] standards. We first observe that the original
SPEKE protocol is subtly different from those defined
in the standards. The difference has significant security
implications, which are not explained in the standards.

During the review, we have identified several issues that
have not been reported before. In particular, we find two
new attacks on SPEKE: namely, an impersonation attack
and a key-malleability attack. The first attack allows an at-
tacker to impersonate a user without knowing the password
by launching two parallel sessions with the victim. The sec-
ond attack allows an attacker to manipulate the session key
without being detected. To address the identified problems,
we propose a patched SPEKE, called P-SPEKE, which
prevents both attacks by including the user identities in the
key derivation function without altering the symmetry of the
original SPEKE protocol. We build a formal model in the
Applied Pi Calculus using ProVerif and apply it to formally
analyse P-SPEKE. Our analysis confirms that the proposed
patch is immune to the attacks. Finally, we identify an
efficiency problem with the key confirmation procedure
specified in both the ISO/IEC and IEEE standards and
accordingly propose an improved procedure.

Our contributions are summarized below.
• We discover two new attacks on SPEKE: an imperson-

ation attack and a key-malleability attack. We explain
how the attacks affect the SPEKE variants specified in
the IEEE P1363.2 and ISO/IEC 11770-4 standards.

• We propose a patched SPEKE, called P-SPEKE, which
prevents both attacks without altering the symmetry
of the SPEKE protocol. Furthermore, we propose an
improved key confirmation procedure, which is more
round-efficient than the one defined in the standards.

• We build a formal model in the Applied Pi Calculus
and verify the proposed patch by using ProVerif. Our
formal analysis confirms that the proposed patch is
immune against the identified attacks.

This paper extends the earlier conference paper [20] by
adding a formal analysis of the patched SPEKE protocol,
and details of how the proposed patch was accepted and
included into the revision of ISO/IEC 11770-4. The two

http://arxiv.org/abs/1802.04900v2

2

attacks and the efficiency issues, initially reported in [20],
were discussed and acknowledged by the technical commit-
tee of ISO/IEC SC 27, Working Group 2. Accordingly, the
ISO/IEC 11770-4 standard was revised. The latest revision
ISO/IEC 11770-4:2017, incorporating our proposed patch
and the improved key confirmation procedure, was formally
published in November 2017 [24].

II. BACKGROUND

A. Password Authenticated Key Exchange

Since the invention of the first PAKE solution in [9],
many PAKE protocols have been proposed, among which
only a few have been actually used in practice. Notable
examples of PAKE that have been deployed in practi-
cal applications include EKE [9], SPEKE [25] and J-
PAKE [19]. These three protocols happen to represent three
different ways of constructing a PAKE. EKE works by
using the shared password as a symmetric key to encrypt
Diffie-Hellman key exchange items. Variants of EKE (e.g.,
SPAKE2 [5]) often differ only in how the symmetric cipher
is instantiated. SPEKE works by using the shared password
to derive a secret group generator for performing Diffie-
Hellman key exchange. There are variants of SPEKE, such
as Dragonfly [21] and PACE [10], which use different
methods to derive the secret generator from the password.
J-PAKE works by using the password to randomize the
secret exponents in order to achieve a cancellation effect.
A distinctive feature of J-PAKE as compared to the other
two is its use of Zero Knowledge Proof (ZKP) to enforce
participants to follow the protocol specification. By com-
parison, the use of ZKP is considered incompatible with
the design of EKE and SPEKE.

A PAKE protocol serves to provide two functions: au-
thentication and key exchange. The former is based on the
knowledge of a password. If the two passwords match at
both ends, a session key will be created for the subsequent
secure communication. In the following, we review some
common properties of a secure password authenticated
key exchange protocols based on [9], [19], [25]; we also
refer the reader to classic definitions of authentication
from Lowe [28]. Formal treatments of PAKE, based on
authenticated key exchange models proposed by Bellare
and Rogaway in 1993 [8], can be found in [4], [7], [17],
[27].
Correctness. In the setting of key-exchange protocols, the
protocol is correct if it gives both authentication and key
distribution in presence of honest parties [32]. This is a
basic and necessary step in a formal model to prove that
without influence of attackers, honest parties should always
complete the protocol as expected.
Secrecy of the pre-shared password. This property re-
quires that the execution of the protocol must not reveal
any data that would allow an attacker to learn the password
through off-line exhaustive search. If the attacker is directly
engaging in the key exchange, he should be limited to guess
only one password per protocol execution.
Implicit key authentication. Assume the key exchange
protocol is run between Alice and Bob. The protocol is

said to provide implicit key authentication if Alice is
assured that no one other than Bob can compute the session
key [30].
Explicit key authentication. Explicit authentication can
only be achieved with a confirmation phase [30]. This
property requires that the entities have actually computed
the same key. It completes and strengthens the implicit
key authentication; in fact, if the two participants are the
sole entities who can learn the session key and they have
actually computed the key, the successive communication
shall be secure.
Weak and strong entity authentication. Weak or strong

entity authentication respectively correspond to the weak

agreement and injective agreement properties of Lowe [28].
A protocol achieves weak authentication if a participant
believes she is speaking with another participant, and the
other participant indeed started an authentication process
with her. Even though this may seem a sufficient property
for mutual authentication, it is not. In fact, nothing can
be said about the problem where the party is tricked to
communicate with some replayed session of the other
party. With strong authentication, the additional property
of agreeing with both the session and the session key is
required. Strong entity authentication ensures that replay
attacks and man-in-the-middle attacks are prevented.
Perfect forward secrecy. Perfect forward secrecy (PFS)
ensures that the confidentiality of past session keys is pre-
served even when the long term secret, i.e., the password, is
disclosed. This property implies that an attacker who knows
the password still cannot learn the session key if he only
passively eavesdrops the key exchange process.

B. The original SPEKE

The original specification of the SPEKE protocol in
Jablon’s 1996 paper [25] is as follows. Participants agreed
on a group G of safe prime order p = 2q+1 where q is also
a prime. The SPEKE protocol operates in the subgroup of
G of prime order q where the discrete logarithm problem
is assumed to be hard. Two remote parties, Alice and
Bob, share a common secret password s from which they
apply a function f(·) to compute the group generator:
g = f(s) = s2 mod p. Unless specified otherwise, all
modular operations in the rest of the paper are performed
with respect to the modulus p. We will omit “mod p” in
the notation for simplicity.

The SPEKE protocol runs in two phases: the key-

exchange phase and the key-confirmation phase, as illus-
trated in Figure 1. In the first phase, Alice chooses a secret
value x uniformly at random in Z⋆

q = {1, . . . , q − 1},
and sends gx to Bob. Similarly, Bob chooses a secret
value y uniformly at random in Z⋆

q , and sends gy to
Alice. Upon receiving gy, Alice verifies that its value is
between 2 and p− 2. This is to prevent the small subgroup
confinement attack. Subsequently, Alice computes a session
key k = H((gy)x) = H(gxy) where H is a cryptographic
hash function (used as a key derivation function here). Sim-
ilarly Bob verifies gx belongs to {2, . . . , p− 2} and then

3

computes the same session key k = H((gx)y) = H(gxy).
The key-exchange phase is completely symmetric. The
symmetry in the design helps simplify the security analysis
and reduce the communication rounds especially in a mesh
network.

The second phase serves to provide explicit assurance
that both parties have actually derived the same session
key. This is realized in the original SPEKE paper [25] as
follows: one party sends H(H(k)) first and the other party
replies with H(k) later.

The above key confirmation method has two subtle
issues. First, it is ambiguous which party should send
H(H(k)) first. As we will explain, this ambiguity also
carries over to the SPEKE specifications in the ISO/IEC
and IEEE standards. Second, from a theoretical perspective,
the direct use of the session key in the key confirmation
process renders the session key no longer indistinguishable
from random after the key confirmation is finished, hence
breaking the session-key indistinguishability requirement in
a formal model [8].

In the standards, the key confirmation phase is optional
and it is left to the applications to decide whether it is
added. With the absence of this phase, key confirmation
will have to be deferred to the later secure communication
stage where the session key is used to encrypt and decrypt
messages (in the authenticated mode) and the decryption
will only work if the session keys used at the two sides are
equal.

Figure 1. Original SPEKE scheme. A and B share the password s and
computed g = s2 mod p.

A B

x
R
← Z

⋆
q , X ← gx y

R
← Z

⋆
q , Y ← gy

A,X
−−−−−−−−−−→

B, Y
←−−−−−−−−−−

abort if abort if
Y /∈{2, . . . , p− 2} X /∈{2, . . . , p− 2}
else k ← H (Y x) else k ← H (Xy)

key-exchange phase
(optional) confirmation phase

H (H (k))
−−−−−−−−−−→

H (k)
←−−−−−−−−−−

abort if abort if
hash is wrong, hash is wrong,

otherwise accept otherwise accept

C. Previous attacks

In [33], Zhang proposed an exponential-equivalence at-
tack on SPEKE. This attack exploits the fact that some
passwords are exponentially related. For example, two
different passwords s and s′ may have the relation that
s′ = sr mod p where r is an arbitrary integer (r 6= 1).
By exploiting this relation, an active attacker can rule out
two passwords in one go, and in the general case can rule

out multiple passwords in one go if they are all exponen-
tially related. This attack is especially problematic when
the password is digits-only, e.g., a Personal Identification
Numbers (PIN). As a countermeasure, Zhang proposed to
hash the password before taking the square operation: in
other words, redefining the password mapping function
to f(s) = (H(s))2 mod p. The hashing of passwords
makes it much harder for the attacker to find exponential
equivalence among the hashed outputs. Zhang’s attack is
acknowledged in IEEE P1363.2 [22], which adds a hash
function in SPEKE when deriving the base generator from
the password.

Tang and Mitchell illustrated three attacks on the SPEKE
protocol [31]. The first attack is essentially the same as
Zhang’s [33]: an active attacker is able to test multiple
passwords in one execution of the protocol by exploiting the
exponential equivalence of passwords. The authors suggest
to hash the identities of the parties along with the password
to get the generator, that is g = H (s‖A‖B) where A and
B are identities of two communicating parties. However,
this countermeasure has the limitation that it breaks the
symmetry of the protocol; instead of allowing the two
parties to exchange messages simultaneously in one round,
the two parties must first agree whose identity should be put
first in the hash, which requires extra communication. The
second attack is a unilateral Unknown Key-Share (UKS)
attack. In this attack, the user is assumed to share the
same password with more than one servers1. By replaying
messages, the attacker may trick the user into believing that
he is sharing a key with one server, but in fact he is sharing
a key with a different server. To address the attack, they
propose to include the server’s identity into the computation
of g. However, same as before, this countermeasure breaks
the symmetry of the original protocol. The last attack they
show is a scenario where two sessions are swapped. Here,
the two parties run two concurrent sessions, and the attacker
swaps the messages between the two sessions. At the end
of the protocol, the parties will have shared two session
keys, but they may get confused which message belongs to
which session. They call this a generic vulnerability, which
in this paper we call a sessions swap attack. To address this
problem, they propose to include the “session identifier”
into the computation of g, but the paper gives no details on
the definition of the “session identifier”.

D. Specification in standards

When SPEKE was included into the IEEE P1363.2 and
ISO/IEC 11770-4 standards, the protocol was revised to
prevent the exponential-equivalence attack reported in [33]
and [31]. In the revised protocol, the password is hashed
first before computing a secret generator. More specifically,
the generator is obtained from g = (H(s))2 mod p instead
of g = s2 mod p as in the original 1996 paper.

1We remark that it is unusual to assume a user shares the same password
with multiple server in the security model for PAKE, as a server will be
able to trivially impersonate another server. However, in practice, many
users do reuse passwords across several accounts.

4

It is also worth noting that the key confirmation proce-
dure of SPEKE defined in the standards is also different
from that in the original SPEKE paper [25]. In IEEE
P1363.2 [22] and in ISO/IEC 11770-4:2006 [23], the key
confirmation is defined as follows.

Alice → Bob : H(3‖gx‖gy‖gyx‖g)
Bob → Alice : H(4‖gx‖gy‖gxy‖g)

(1)

As explicitly stated in the ISO/IEC 11770-4 standard, there
is no order in the above two steps. In the same standard,
it is also stated that there is no order during the SPEKE
exchange phase. We find the two statements contradictory:
the fact that gx comes before gy in the definition of
key confirmation implies there is an order during the key
exchange phase.

We would like to highlight that the above issue was
carried over from Jablon’s original 1996 paper [25], which
specifies that “Alice” sends the first confirmation message
H(H(k)). Given the symmetric nature of the protocol, it is
ambiguous which party is “Alice”. This ambiguity was un-
questioned at the time of standardization and consequently
was inherited by the specifications in IEEE P1363.2 and
ISO/IEC 11770-4:2006.

We presented the above issue to the ISO/IEC SC 27
technical committee. The issue was acknowledged and
rectified in the latest revision ISO/IEC 11770-4:2017. We
will explain the details of the change later.

III. NEW ATTACKS

In this section, we present two new attacks that are
not reported before: an impersonation attack and a key-
malleability attack. We will first explain how the attacks
work on the original SPEKE protocol [25] and then explain
their applicability to the SPEKE variants defined in the
IEEE and ISO/IEC standards [22], [23].

A. Impersonation attack

The first attack happens in the setting of parallel sessions:
a user is engaged with another user in multiple sessions
running in parallel. We illustrate the attack of Mallory
who will be able to impersonate the user Bob to Alice,
by launching parallel sessions with Alice to make Alice
believe she is communicating with Bob, but actually Bob
is not involved at all in the communication.

The attack is illustrated in Figure 2. Details of each step
are explained below.

1) Alice chooses a secret exponent x and computes
X ← gx. She initiates the protocol by sending A,X

to the insecure channel.
2) Mallory is in control of the channel and intercepts

all the messages to Bob who never receives any-
thing. So, Mallory receives the first message from
Alice and generates an exponent z such that Xz ∈
{2, . . . , p− 2}2. Mallory, impersonating Bob, initi-

2When z = 1 the work of Mallory reduces to simply relaying Alice’s
messages to herself in the other session, which may be detected if Alice
checks for duplicate of messages.

Figure 2. Impersonation attack on SPEKE

Alice Mallory (impersonating Bob)

Choose arbitrary z (Session 1)
x

R
← Z

∗

q
, X ← gx 1. (A,X)

−−−−−−−−→
k ← KDF(Y z·x) 4. (B, Y z)

←−−−−−−−−
Start key confirmation 5. H(H(k))

−−−−−−−−−→
Verify key confirmation 8. H(k)

←−−−−−−

{Xz, H(H(k))} ↓↑ {Y z, H(k)}

y
R
← Z

∗

q
, Y ← gx 2. (B,Xz)

←−−−−−−−−−
(Session 2)k← KDF(Xz·y) 3. (A, Y)

−−−−−−−→
Verify key confirmation 6. H(H(k))

←−−−−−−−−−
Reply key confirmation 7. H(k)

−−−−−−→

ates a parallel SPEKE session with Alice by sending
her B,Xz .

3) Alice follows the second session generating an expo-
nent y and computing Y ← gy. She sends A, Y to
the insecure channel.

4) Mallory intercepts the message and raises it to the
power of z (with overwhelming probability, Y z will
not be 1 or p−1). Then, Mallory sends back to Alice
B, Y z in the first session.

5) At this point, Alice computes the key k =
H ((Y z)x) = H (gxyz) for the first session, generates
the key confirmation challenge H(H(k)), and sends
it to Bob.

6) Mallory intercepts the challenge from the first session
and relays it to Alice in the second session.

7) Following the protocol, Alice answers the challenge
with H (k).

8) Finally, Mallory intercepts Alice’s answer in the
second session and replays it in the first session to
pass the key confirmation procedure.

At the end of the above attack, Alice authenticates
Mallory as “Bob” in both sessions. However, Mallory does
not know any secret password and the real “Bob” has never
been involved in this key exchange. This indicates a serious
flaw in the authentication procedure. We should note that in
the above attack, we assume the initiator of the session is
responsible for sending the first key confirmation message.
This is allowed by the protocol since SPEKE specifications
in both the IEEE and ISO/IEC standards permit the two
parties to start the key confirmation in any order.

This attack can be regarded as a special instance of the
Unknown Key-Share (UKS) attack [18]. Alice thinks she
is communicating with “Bob”, but actually she is commu-
nicating with another instance of herself. This confusion
of identities in the key establishment can cause problems
in some scenarios. For example, using the derived session
key k in an authenticated mode, like AES-GCM, Alice may
send an encrypted message to Bob: “Please pay Charlie 5
bitcoins”. Mallory can intercept this message and (without
knowing its content) relay back to Alice in the second
session. Since the message is verified to be authentic from
“Bob”, Alice may follow the instruction (assume Alice is
an automated program that follows the protocol). Thus,

5

although Alice’s initial intention is to make Bob pay Charlie
5 bitcoins, she ends up paying Charlie instead.

B. Key-malleability attack

The second attack is a man-in-the-middle attack as shown
in Figure 3. The attacker chooses an arbitrary z from
{2, . . . , q − 2}, raises the intercepted item to the power of
z and passes it on. The parties at the two ends are still able
to derive the same session key k = H(gxyz), but without
being aware that the messages have been modified.

The fact that an attacker is able to manipulate the session
key without being detected has significant implications on
the theoretical analysis of the protocol. In the original
SPEKE paper, the protocol has no security proofs; it is
heuristically argued that the security of the session key
in SPEKE depends on either the Computational Diffie-
Hellman assumption (i.e., an attacker is unable to com-
pute the session key) or the Decisional Diffie-Hellman
assumption (i.e., an attacker is unable to distinguish the
session key from random). The existence of such a key-
malleability attack suggests that a clean reduction to CDH
or DDH is not possible. As an example, z can be a result
of an arbitrary function f(·) with the incepted inputs, i.e.,
z = f(gx, gy). Because of the correlation of values on
the exponent, standard CHD and DDH assumptions are
not applicable since they require the secret values on the
exponent be independent.

C. Discussion on standards

1) Explicit key confirmation: Recall from Section II-D
that the SPEKE schemes specified in the standards differ
from the original SPEKE paper in how the explicit key con-
firmation is defined. More specifically, the key confirmation
procedure in IEEE P1363.2 and ISO/IEC 11770-4 includes
additional data in the hash: i.e., key exchange items gx and
gy. This change does not prevent the impersonation attack;
the attacker is still able to relay the key confirmation string
in one session to another parallel session to accomplish
mutual authentication in both sessions. However, the key-
malleability attack no longer works if the key confirmation
method in IEEE 1363.2 or ISO/IEC 11770-4 is used.
We should emphasize that the key confirmation method
in both standards are marked as “optional”. Hence, the
key-malleability attack is still applicable to the implicitly

authenticated version of the SPEKE in both standards.
2) Definition of shared secret: In the earlier conference

version of the paper [20], we point out that the definition
of the shared secret in ISO/IEC 11770-4:2006 [23] is
ambiguous. The shared low-entropy secret, denoted π in
that standard document [23], is defined as follows.

“A password-based octet string which is gen-

erally derived from a password or a hashed

password, identifiers for one or more entities,

an identifier of a communication session if more

than one session might execute concurrently, and

optionally includes a salt value and/or other data.

The above definition seems to include the “identifiers
for one or more entities” as part of the shared secret.
If the entity identifiers were included, the impersonation
attack would not work, but the key-malleability would
still work. However, the standard does not provide any
formula about π. It is not even clear if one or both entities’
identifiers should be included, and if only one identifier is
to be included, which one and how. Furthermore, the word
“generally” weakens the rigour in the definition and makes
it subject to potentially different interpretations.

By comparison, the definition of the shared secret in
IEEE P1363.2 (D26) [22] is clearer. It is specified as
follows:

“A password-based octet string, used for authen-

tication. π is generally derived from a password

or a hashed password, and may incorporate a salt

value, identifiers for one or more parties, and/or

other shared data.”

This definition clearly indicates that the incorporation of
“a salt value, identifiers for one or more parties, and/or other
shared data” is not mandatory (as indicated by the use of
the word “may”). Based on the definition, it is clear that
both attacks are applicable to the SPEKE scheme defined
in IEEE P1363.2.

The issue about the ambiguity in the definition was
acknowledge by ISO/IEC SC 27 after we first pointed it
out in [20], and was rectified accordingly. In the latest
revision in ISO/IEC 11770-4:2017, the definition of the
shared secret has been revised to follow the same as in
IEEE P1363.2 (D26) [22]. In this revision, the two reported
attacks are addressed by making technical changes to the
SPEKE specification, as we will explain in the next section.

IV. SOLUTION

A. Patched SPEKE

There are several reasons to explain the cause of the
two attacks. First, there is no reliable method in SPEKE to
prevent a sent message being relayed back to the sender.
Second, there is no mechanism in the protocol to verify the
integrity of the message, i.e., whether they have been altered
during the transit. Third, no user identifiers are included in
the key exchange process. It may be argued that all these
issues can be addressed by using a Zero Knowledge Proof
(ZKP) (as done in [19]). However, in SPEKE, the generator
is a secret, which makes it incompatible with any existing
ZKP construction. Since the use of ZKP is impossible in
SPEKE, we need to address the attacks in a different way.

Our proposed patch is to redefine the session key com-
putation. Assume Alice sends gx and Bob sends gy . The
session key computation is defined below.

sA = H(A‖gx)

sB = H(B‖gy)

sID = max(sA, sB)‖min(sA, sB)

k = KDF(sID‖gxy) (2)

When the two users are engaged in multiple concurrent
sessions, they need to ensure the identifiers are unique

6

Figure 3. Key-malleability attack on SPEKE
Alice A MITM Bob B

x
R
← Z

∗

q , X ← gx (A,X)
−−−−−−→

(B, Y)
←−−−−−−

y
R
← Z

∗

q , Y ← gx

Choose arbitary z
k ← KDF(Y z·x) (B, Y z)

←−−−−−−
Raise to power z (A,Xz)

−−−−−−−→
k ← KDF(Xz·y)

between these sessions. As an example, assume Alice and
Bob launch several concurrent sessions. They may use
“Alice” and “Bob” in the first session. When launching a
second concurrent session, they should add an extension
to make the entity identifier unique – for example, the
entity identifiers may become “Alice (2)” and “Bob (2)”
respectively in the second session, and so on. The use of
the extension is to make the entity identifier distinguishable
among multiple sessions running in parallel.

The new definition of the session-key computation func-
tion in Eq. 2 prevents both the impersonation and key-
malleability attacks (as well as the session swap attack
reported in [31]), which we will formally prove in the
next section. The key confirmation remains “optional" as it
is currently defined in the standards. Furthermore, this patch
preserves the optimal one-round efficiency of the original
SPEKE protocol.

An alternative patch, suggested in the earlier conference
paper [20], is to refine the session key computation as
follows.

M = H (min(A,B)‖max(A,B))

N = H (min(gx, gy)‖max(gx, gy))

k = KDF(M,N, gxy) (3)

As we will formally analyze in Section V, the above so-
lution also prevents the two attacks. However, the advantage
of the solution in Eq. 2 is that the hash output has a fixed
bit length, which makes it easier to implement the max and
min function. The final patch, which has been included into
the latest revision of ISO/IEC 11770-4 published in 2017,
is summarized in Figure 4.

B. Improved key confirmation

As highlighted in Section II-D, neither of the key con-
firmation procedures defined in IEEE P1363.2 (D26) and
ISO/IEC 11770-4 (2006) is symmetric. In both standards,
they state that there is “no special ordering” of the key
confirmation message. This implies that the messages can
be sent simultaneously within one round. But in fact, these
procedures require two rounds instead of one, because the
second message depends on the first. This issue also applies
to the key confirmation method in Jablon’s original 1996
paper [25]. If both parties attempt to send the first message
at the same time without an agreed order, they cannot tell
if the message that they receive is a genuine challenge or
a replayed message, and consequently enter a deadlock.

To address the above issue, we propose an improved
key confirmation method which preserves the symmetry of

the protocol and hence allows the key confirmation to be
completed within one round. It works as follows.

Alice → Bob : H(A‖B‖gx‖gy‖gxy‖g)
Bob → Alice : H(B‖A‖gy‖gx‖gxy‖g)

(4)

An alternative solution, proposed in our earlier pa-
per [20], is based on NIST SP 800-56A Revision 1 [6].
It works as follows.

Alice→ Bob : MAC(kc, “KC_1_U”‖A‖B‖gx‖gy)
Bob → Alice : MAC(kc, “KC_1_U”, ‖B‖A‖gy‖gx)

In the above method, MAC is a message authenticated code
(MAC) algorithm, the string “KC_1_U” refers to unilateral
key confirmation, and kc is a MAC key. To allow the session
key to remain indistinguishable from random even after the
key confirmation phase, kc should be derived differently
from the session key, e.g., by adding a specific parameter
to the key derivation function say kc = KDF(gxy, “KC”).
There is no dependence between the two flows, so Alice and
Bob can send messages in one round. During the revision of
ISO/IEC 11770-4, the hash based key confirmation method
in Eq. 4 was preferred and was included into the latest
standard since it requires minimum changes in the standard.

V. FORMAL ANALYSIS

In this section, we build a formal model using the
Applied Pi Calculus, then we apply this model to for-
mally analyse the proposed patch in comparison to existing
SPEKE variants.

A. Reasoning in the Applied Pi Calculus in ProVerif

ProVerif [13] is a tool for reasoning in the symbolic
model. It has proved successful in formally verifying
dozens of protocols, and has been widely accepted by the
community. ProVerif’s input language is a dialect of the
Applied Pi Calculus [2], [14], and we limit our informal
illustration of the language to the subset that will be useful
for describing our model.

The language is strongly typed, and arbitrary types can
be declared. We use the following types for our model: H
for the hosts, S for session IDs, K for session keys, then
we have the order-q sub-group of Z⋆

p where p = 2q + 1
is a safe prime, and the elements in this sub-group can be
expressed as gx where g is a generator and x is from Z

⋆
q .

The main abstraction of the Pi Calculus is the process.
A process describes the algorithm that an entity follows
according to the specifications of a protocol scheme. They
can (i) include variables, constants, functions, and (private)

7

Figure 4. Patched SPEKE (included in ISO/IEC 11770-4:2017 [24])
Public group parameters: p, q where p = 2q + 1

Secret information: pw, g ← f(pw)

Alice A Bob B

x
R
← Z

∗

q , X ← gx y
R
← Z

∗

q , Y ← gy

(A,X)
−−−−−−→
(B,Y)
←−−−−−−

Abort if Y /∈ {2, . . . , p− 2} Abort if X /∈ {2, . . . , p− 2}
sA ← H(A||X) sA ← H(A||X)
sB ← H(B||Y) sB ← H(B||Y)

sID← max(sA, sB)||min(sA, sB) sID← max(sA, sB)||min(sA, sB)
k ← KDF(sID||Y x) k ← KDF(sID||Xy)

nonces (i.e. νx.P restricts the value x to the process P) (ii)
write to and read from any channel c, denoted by out (c, _)
and in (c, _) respectively, (iii) insert and extract elements
to and from any table t, insert t (_) and get t(_), and (iv)
record events. Processes can be put in sequential or parallel
execution with other processes including themselves, for
unbounded number of times of replication. Such instru-
ments allow for symbolic modelling of protocols.

To model security properties, the language offers some
facility. The secrecy of names is verified in terms of un-
reachability and indistinguishability. The unreachability of
the secret by the attacker determines whether the knowledge
of the attacker can be augmented with such secret by using
the inference rules determined with respect to the model.
From the point of view of indistinguishability, the tool
determines whether the attacker can distinguish between
executions that use different secrets.

More sophisticated security properties, like entity au-
thentication, bilateral unknown shared-key resilience, and
others, can be formalised through events and correspon-
dences [12]. Events must be explicitly included as extra
lines into the processes, can take arguments, and will be
recorded in the traces of execution. Correspondences are
implications related to execution of events. By default the
content of events is not accessible to the attacker, until
the attacker is already aware of them or it will be by
other rules. Moreover, the attacker is not directly capable
of recording events, but it may induce processes to do so.
Loosely speaking, an event can be thought as a piece of
meta-semantics with respect to the purpose of the process
itself. For example, the event e (A,B) may be interpreted
as “Alice believes of having started an authentication with
Bob”. Although the terminology “Alice believes. . . ” can
recall the BAN logic [3], and they undoubtedly share some
sort of similarity at a high level, the concept of event is
however different. In fact, its formalism has been built
on top of a criticism to a lack of formality in the BAN
logic [32]; in particular, an event may record something that
cannot be interpreted as a belief. The generic proposition
e (a1, . . . , an) is used as a short notation to say that there
exists (at least) a trace which recorded such event.

The reasoning engine of ProVerif will execute a main

process and record traces of execution. At the same time,
the attacker’s knowledge and the tables, if any, are accord-
ingly updated. Security properties are eventually checked
by inspecting traces, tables, the attacker’s knowledge, and,
for equivalences, relations between traces and processes.
We refer to the paper by Blanchet [13] for additional details.

B. Modelling the SPEKE protocol

We formally model the following variants of the SPEKE
protocol in the Applied Pi Calculus [29]: the original
Jablon’s protocol [25], the ones in IEEE P1363.2:D26 [22]
and ISO/IEC 11770-4:2006 [23], the earlier patch proposed
by Hao and Shahandashti in 2014 [20], and the final patch
described in this paper and included into ISO/IEC 11770-
4:2017 [24], each in two modes:

• without explicit key confirmation,
• with explicit key confirmation as described in the

respective documents.

It is worth noting that a meaningful key exchange
process should always be completed with some form of
key confirmation, let it be explicit or implicit. The explicit
key confirmation is realized by executing the explicit key
confirmation procedure, which requires extra rounds of
communication. But the explicit key confirmation proce-
dure is optional [22], [23]: without it, the key confirmation
is deferred to the secure communication stage, and this is
called implicit key confirmation [30]. However, the exact
mechanisms for implicit key confirmation are not specified
in [22], [23], [25], which makes it difficult to model SPEKE
with implicit key confirmation. To address this issue, we
assume the implicit key confirmation is realized in the se-
cure communication stage by prepending the first encrypted
message with an explicit key confirmation string as defined
in the respective explicit key confirmation procedure. Thus,
our formal model treats SPEKE with implicit and explicit
key confirmations as essentially the same with the only
difference being that the latter requires additional rounds
of communication.

In the model, we formally specify the following:
The two parties. All variants of the SPEKE protocol

involve two parties: the Initiator I and the Responder R.

8

They are modelled as two processes PI and PR. We use the
initiator and the responder for the convenience of naming
in our model. Essentially we assume that one party initiates
the protocol by sending data in the first flow, and the other
party responds by sending data in the second flow. Thus
a one-round protocol is implemented in two flows. This
does not change the security analysis of the protocol. Below
we give the “vanilla” specification of the protocol. In the
“vanilla” specification, we abstract out key reconstruction
by a function symbol kdf , and the confirmation messages
sent by the Initiator and the Responder are abstracted
by the symbols kcfI and kcfR respectively. The actual
specification of each variant has its own definitions of
kdf , kcfI and kcfR to capture the differences between the
variants.

Figure 5. The processes for the Initiator, PI , and the Responder, PR.
In the above specification, the notation = X means abort if the incoming
value is not X .

1

2

3

4

5

6

7

8

9

PI ← in (c, (I,R)) ;

get t (= I,= R, g) in

νx.let X = gx in

out (c, (I,X)) ;

in (c, (= R, Y)) ;

let k = kdf in

out (c, kcfI) ;

in (c,= kcfR) ;

out (c, enc (k,m)) ;

PR ← in (c, (I,R)) ;

get t (= R,= I, g) in

νy.let Y = gy in

out (c, (R, Y)) ;

in (c, (= I,X)) ;

let k = kdf in

in (c,= kcfI) ;

out (c, kcfR) ;

out (c, enc (k,m)) ;

As can be easily seen in Figure 5, the code inside the
boxes is the part modelling the protocol scheme depicted
in Figure 1, where the key reconstruction part is abstracted
by the function symbol kdf , and the confirmation messages
sent by the Initiator and the Responder are abstracted by
the symbols kcfI and kcfR respectively, where we omit
their arguments for simplicity. We highlight the symmetric
nature of the protocol letting both processes to write to the
channel simultaneously.

The other lines (outside the box) in Figure 5 serve to
model the behaviour of the protocol and to verify security
properties. In particular, the first line is to let the processes
know the identities involved in the protocol; they read
them from the channel c at the very beginning. The second
line checks whether the password table contains a suitable
password to communicate to the other party; otherwise,
they abort. The last line is useful to verify the secrecy of
the shared key k through the privacy of the message m,
and the perfect forward secrecy. The details are deferred to
Section V-C where we discuss the security properties.

The pre-shared password. A table t of passwords
is filled with all secret group generators that would be
calculated from the passwords, i.e., g ∈ G is the secret
group generator for A and B. From the point of view
of the symbolic protocol design, sharing a password and
then computing the generator is the same as having directly

shared the secret generator.

The main process. Informally, the main process P

is an infinite repetition of the parallel execution of the
Initiator’s process PI and the Responder’s process PR.
Due to the symmetric nature of the SPEKE protocol, the
naive implementation of the main process brings false

attacks where the Initiator speaks to itself. To avoid this
issue, we must explicitly support the session within the
two parties. However, the session s is not private infor-
mation, and we disclose it to the attacker by outputting
it to the insecure channel c, i.e. out (c, s). At this point,
we have the infinite repetition of the following process:
! (νs.out (c, s) ; (PI |PR)). The two parties would never
engage the protocol if they do not share the password. For
this reason, we have an environment process PP which is
in charge of inserting shared passwords into a table that can
be accessed by PI and PR, but not the attacker. In order
to record events and verify correspondences, we also have
a process PA, which records the agreements between the
parties through events.

Finally, the main process P that the tool checks has the
following structure:

P ← (PP | (! (νs.out (c, s) ; (PI |PR))) |!PA) .

The process PA collects information from two tables,
one filled in by the Initiator and the other by the Responder.
We emphasise that the protocol can be initiated by either of
them and the two tables are put together recording a single
event. For security properties that do not require tables
to record events, the process will be simply 0; otherwise,
depending on the property to prove, the events eS end eC
can be recorded, where eS means that the involved parties
in the protocol agree with the participants, the session, and
the reconstructed session key at the end of the protocol,
and eC means that the involved parties in the protocol
agree with the participants, the session, the secret group,
the secret nonce, and the reconstructed session key at the
end of the protocol.

C. Security properties

The security properties are modelled as follows.

1) Correctness: This property checks whether the proto-
col gives authentication and key distribution in presence of
honest parties [32]. Even though this property is generally
the easiest to prove, it should not be neglected when
formally modelling a protocol, in order to avoid either
logical or typographic errors. To check the correctness of
the models, we need to reconstruct the session key kdf . Its
implementation depends on the SPEKE variants.

Formally, for all the sessions and nonce exponents, we
require that there exists at least a trace in which the event
collecting private and shared values of the participants is
recorded and is such that the two honest participants agree
on their identities, the password, and the session key with

9

the right formula.

∀s ∈ S, x, y ∈ Z
⋆
q , g ∈ Z

⋆
p.

eC(A,B, s, g, x, kdf (A,B, gx, gy, gxy, s) ,
A,B, s, g, y, kdf (A,B, gx, gy, gxy, s))

where A and B are honest parties and g is the generator
calculated from the shared password. If such an event is
raised, then there exists a run of the protocol in which the
two parties have authenticated each other and they have
correctly computed the session key.

2) Secrecy of the pre-shared password: We proved the
secrecy of the password through observational equivalence.
Formally, if we call πg the process describing the protocol
where two honest parties A and B share the password g,
and πg′ the same protocol but with g′ instead of g, then the
observational equivalence πg ≈ πg′ describes the property
that any attacker cannot distinguish between the two runs
of the protocol with probability (non-negligibly) better than
a blind guess, and therefore no extra information about the
secret password can be gained.

3) Implicit key authentication: Implicit key authentica-
tion is verified when only the two participants can recon-
struct the session key. This concept is modelled by using
the key to encrypt a secret message with deterministic
encryption. We then check for observational equivalence of
two runs of the processes PI and PR where in the last line
(Figure 5) the message encrypted is provided by a choice,
out (c, enc (k, [m,m′])). Similar to how we determine the
secrecy of the password, if we call πm the process describ-
ing the protocol where two honest parties A and B encrypt
m, and πm′ the same protocol but with m′ 6= m, then
the observational equivalence πm ≈ πm′ is verified. If the
observational equivalence holds and therefore the message
m remains secret, it trivially follows that the shared key is
at least as secret as m. In fact, the decryption function is
public, and the reconstruction of the key will irredeemably
compromise the secrecy of m.

4) Explicit key authentication: Explicit key authentica-
tion is verified when only the two participants can recon-
struct the session key, and they actually do. It is therefore
defined as implicit key authentication and an agreement on
the computed key for the same session. Formally,

∀h1, h2 ∈ H, s ∈ S, k, k
′ ∈ K.

eS (h1, h2, s, k, h1, h2, s, k
′)⇒ k = k′

In other words, in a trace of execution the presence of the
event eS where the first and fifth arguments being equal
(agreement on the initiator), the second and the sixth being
equal (agreement on the responder), and the third and the
seventh being equal (agreement on the session) implies that
the fourth and the eighth are equal (equivalence of the
reconstructed key). When this property is true, a protocol
completed between two authenticated parties in the same
session guarantees that the parties agree on the session key.
This property, along with the implicit key authentication,
gives explicit key authentication.

5) Weak and strong entity authentication: Weak entity
authentication guarantees that two parties are indeed speak-
ing to each other. Strong entity authentication requires
agreement on other values than the mere entities. These
values are supposed not to be injected, produced or inferred
by an attacker. Those two properties share similarities in
their formality. The events involved are 1) eI to record that
the initiator I believes that it has started a protocol with
the responder R; 2) eR to record that R believes that it has
started a protocol with I; 3) eIR to record that I believes
that it speaks to R at the end of the protocol, and 4) eRI

to record that R believes that it speaks to I at the end of
the protocol. The first and the third are recorded by the
honest initiator, while the the second and the fourth by the
honest responder. Mutual weak authentication is provided
by the two following symmetric correspondences, one for
each honest party:

∀h1, h2 ∈ H. eIR (h1, h2)⇒ eR (h1, h2)

∀h1, h2 ∈ H. eRI (h1, h2)⇒ eI (h1, h2)

And mutual strong authentication by the following:

∀h1, h2 ∈ H, s ∈ S, k ∈ K.

eIR (h1, h2, s, k)⇒ eR (h1, h2, s, k)

∀h1, h2 ∈ H, s ∈ S, k ∈ K.

eRI (h1, h2, s, k)⇒ eI (h1, h2, s, k)

where they agree also on the session and the exchanged
session key. Agreeing on the session will prevent any replay
attack from other sessions, even concurrent, while agreeing
on the key will guarantee that no attacker can let two
authenticated parties not to share the same key. However, a
key-malleability attack is still possible even if the protocol
can achieve strong entity authentication.

6) Perfect forward secrecy: Usually, key exchange pro-
tocols verify (or claim) the perfect forward secrecy (PFS)
property. For the password authenticated key exchange
protocols, this property means that if passwords are com-
promised, the past session keys derived from such pass-
words still remain secret. Hence, an adversary can only
keep a record of past communication which has not been
compromised. We can reformulate this concept as a passive

adversary whom is given the password and eavesdrops
(unbounded number of) executions of the protocol trying
to reconstruct any of the session keys. In practice, to
verify this property we disclose the secret generator g to
the attacker, out (c, g), then we query the non-interference
property on the encrypted message. Since the passive
attacker can compute any decryption, the non-interference
property captures the perfect forward secrecy, i.e., if the
encrypted message cannot be reconstructed, it must be that
any session key cannot be reconstructed either.

7) Bilateral UKS: Informally, a successful bilateral UKS
attack makes two honest parties I and R believe that they
share k with some other party [15]. To capture this attack,

10

we use the following correspondence:

∀h1,h2, h
′
1, h
′
2 ∈ H, s, s

′ ∈ S, k ∈ K.

eS (h1, h2, s, k, h
′
1, h
′
2, s
′, k)⇒ h1 = h′1 ∧ h2 = h′2

If an initiator and a responder recorded the same key, then
it must be that they agree on the entities. If we required
that they should agree on the session too, then we could put
s = s′ in logical AND with the two equivalences. On the
contrary, if we wanted to force the tool to show bilateral
UKS attacks in the same session, we could state s = s′ as
a premise.

8) Impersonation attack: The impersonation attack is
a problem that generally affects SPEKE protocols and an
instance of such an attack has been shown in Section III-A.
To formalise this attack, we build a model in which there
exists only one honest party and the attacker. In this case,
if the honest party ever shares a key with another party,
then the other party must be the attacker, and the attacker
must impersonate another honest party in order to run the
protocol up to this point. In fact, all SPEKE variants without
key confirmation phase are vulnerable to this attack.

To verify, we can check for every honest party, session
and key, the event of authenticating the other party is not
recorded in any trace (i.e. the adversary cannot establish a
shared key with the honest party). Formally, we check the
following property:

∀h1, h2 ∈ H,s ∈ S, k ∈ K.

¬ (eRI (h1, h2, s, k) ∨ eIR (h1, h2, s, k)) .

9) Sessions swap: A man-in-the-middle is able to per-
form the sessions swap attack if it can let a honest party
in some session s share a key with another honest party in
some other concurrent session s′ and vice versa. This attack
occurs in a key-exchange protocol where the key does not
depend on the session. Formally, we say that for every two
parties and for every key, the presence of an agreement on
the Initiator, Responder, and session key must imply the
equivalence of the sessions.

∀h1, h2 ∈ H,s, s
′ ∈ S, k ∈ K.

eS (h1, h2, s, k, h1, h2, s
′, k)⇒ s = s′.

10) Malleability: The malleability of the session key is
an attack that affects many variants of the SPEKE protocols,
and it was described in Section III-B. Capturing the mal-
leability attack in ProVerif requires more efforts than other
attacks, because it is based on an extra level of group ex-
ponentiation equality (three commutative exponents). This
results in a larger search space when the reasoning engine
checks the property, and ProVerif slows down considerably
(taking minutes instead of milliseconds to verify the non-
malleability property on a 3.2 GHz computer with 64 GB
RAM running Linux). To detect malleability, we require
the two honest parties to write into a table some values
they agree with, plus their secret fresh exponents and the
secret generator (the password). This way, when checking
for correspondence, we can check whether the key is indeed

what is expected with regard to the private inputs of the
parties.

Formally, for every pair of parties, session, generator, two
exponents and key, where the parties agree on the identities,
the session, the generator and the key (they cannot agree
on the other party’s secret), then the key they agree on
is computed equivalently to the formula provided by the
protocol.

∀h1, h2 ∈ H, x, y ∈ Z
⋆
q , g ∈ Z

⋆
p, s ∈ S, k ∈ K.

eC (h1, h2, s, h, x, k, h1, h2, s, g, y, k)⇒

k = kdf (a, b, gx, gy, gxy, s) ∨ kdf (b, a, gy, gx, gxy, s) .

Note the key k may have two different values depending on
in the protocol who is the initiator and who is the responder.

VI. SUMMARY OF RESULTS

The ProVerif scripts that we created to model and verify
the protocols are available at GitHub [1]. There are in total
54 scripts related to this paper, each for a different variant
and a property. ProVerif will give one of the following
four responses: (i) the property is true, (ii) the property
is false, (iii) the property cannot be proved, and (iv) non-
termination.

The results are summarised in Table I. The proposed
patch (as well as the patch in [20]) improves the round
efficiency over the previous SPEKE variants [22], [23],
[25] by allowing the explicit key confirmation steps to
be completed within one round. As a result, it requires
only 2 rounds to finish the key exchange with explicit
key confirmation as opposed to 3 rounds previously. All
variants have the Implicit Key Authentication (IKA) prop-
erty, confirming that the session key will not be learned by
the attacker, and that the attacker cannot get confidential
information by eavesdropping. This does not contradict
the impersonation attack shown in Section III, since that
attack works without the adversary learning the session
key. However, that attack demonstrates that the adversary is
able to manipulate the two parallel sessions to make them
generate identical session keys. Consequently, the adversary
is able to pass the explicit key confirmation by replaying
messages. This is confirmed by our formal analysis that the
original SPEKE [25], and the SPEKE in standards [22],
[23] do not fulfil the explicit key authentication property.
Also, the existence of the impersonation attack shows that
these variants do not fulfil the weak/strong entity authenti-
cation which concerns assuring the identities of the entities
involved in the key exchange protocol. The proposed patch
prevents the Session Swap attack (SS), the UKS attack,
and the Malleability (MAL) attack by making the session
key depend on the session, the identities, and the transcript
of the key exchange process. We emphasise that these
security properties are verified before any key confirmation
either implicit or explicit. To guarantee that the participants
are mutually authenticated, the key confirmation becomes
necessary. Such key confirmation must include all of the
key points above, i.e., session, identities, and a transcript
of the key exchange messages, so avoiding the above

11

Table I
SUMMARY OF RESULTS ON EFFICIENCY AND FORMAL VERIFICATION IN PROVERIF

Variants RND RND-E IKA EKA WA SA IMP SS PFS UKS MAL

Jablon 1996 paper [25] 1 3 X × × × × × X × ×

IEEE P1363.2:D26 [22] 1 3 X × × × × × X × X

ISO/IEC 11770-4:2006 [23] 1 3 X × × × × × X × X

Hao and Shahandashti [20] 1 2 X X X X X X X X X

P-SPEKE (ISO/IEC 11770-4:2017) 1 2 X X X X X X X X X

The results are grouped by variants with and without key confirmation phase (KC).
Legend. Round efficiency: without explicit key confirmation (RND), with explicit key confirmation (RND-E). Security properties: Implicit Key
Authentication (IKA), Explicit Key Authentication (EKA), Weak Entity Authentication (WA), Strong Entity Authentication (SA), Impersonation
resilience (IMP), Sessions Swap resilience (SS), Perfect Forward Secrecy (PFS), bilateral Unknown Key-Share resilience (UKS), and Malleability
resilience (MAL). Outcomes: (X) - verified, (×) - attacks found, (−) - not applicable.

mentioned attacks. Including only the identities allows to
verify weak entity authentication only.

Our formal analysis using ProVerif confirms that our
proposed patch prevents the two attacks as identified earlier.
However, this analysis does not constitute a complete proof
of security for SPEKE, as one might expect from formal
authenticated key exchange models [4], [7], [8], [17], [27].
In particular, we have not proved that SPEKE is resistant
against off-line dictionary attacks based on standard secu-
rity assumptions such as DDH or CDH. We highlight that
the original SPEKE was designed without a security proof.
Retrospective efforts to prove the security of a protocol
based on standard number theoretical assumptions may turn
out to be very hard if not impossible. We leave further
analysis of SPEKE to future work.

VII. CONCLUSIONS

The SPEKE protocol was firstly proposed by Jablon
over two decades ago. Since then, it has been adopted
by international standards, and built into smart phones and
other products. We identified two weaknesses in the stan-
dardized SPEKE specification, which affect all implemen-
tations that follow the IEEE 1362.3 and ISO/IEC standards.
Accordingly we proposed a patched SPEKE to address
the identified issues. We formally modelled the discovered
attacks against SPEKE and proved that the proposed patch
was immune to these attacks. In addition, we contributed
to improve the round efficiency of the protocol in the key
confirmation phrase. Our proposed patch and the improved
key confirmation procedure have been included into the
latest revision ISO/IEC 11770-4 published in July 2017.
However, the SPEKE specification in IEEE P1363.2 (which
is currently not maintained) remains unfixed.

The problems in SPEKE identified in this paper have
evaded 20 years cryptanalysis (informal and formal) by
the security and standardization communities. The initial
discovery of the two attacks on SPEKE was down to manual
analysis, which was later formally verified by applying the
ProVerif tool. The mechanised proofs that we produce are
not only helpful for proving security properties of similar
protocols, but also for preventing the same problems in the
future. This shows that traditional human cryptanalysis, in
conjunction with modern automated proof techniques, is
useful in improving security protocols, especially those that
have been included in international standards.

ACKNOWLEDGEMENTS

We thank Professor Liqun Chen for her invaluable advice
and comments on revising SPEKE in ISO/IEC 11770-4.

REFERENCES

[1] Verification of SPEKE using ProVerif.
https://github.com/nitrogl/speke-verification, 2018.

[2] M. Abadi, B. Blanchet, and C. Fournet. The applied pi calculus:
Mobile values, new names, and secure communication. arXiv
preprint arXiv:1609.03003, 2016.

[3] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication.
In Proceedings of the tenth annual ACM symposium on Principles

of distributed computing, pages 201–216. ACM, 1991.
[4] M. Abdalla, F. Benhamouda, and P. MacKenzie. Security of the

j-pake password-authenticated key exchange protocol. In Security

and Privacy (SP), 2015 IEEE Symposium on, pages 571–587. IEEE,
2015.

[5] M. Abdalla and D. Pointcheval. Simple password-based encrypted
key exchange protocols. In CT-RSA, volume 3376, pages 191–208.
Springer, 2005.

[6] E. Barker, L. Chen, A. Roginsky, and M. Smid. Recommendation
for pair-wise key establishment schemes using discrete logarithm
cryptography. NIST special publication, 800:56A, 2013.

[7] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key ex-
change secure against dictionary attacks. In international conference
on the theory and applications of cryptographic techniques, pages
139–155. Springer, 2000.

[8] M. Bellare and P. Rogaway. Entity authentication and key distribu-
tion. In Annual international cryptology conference, pages 232–249.
Springer, 1993.

[9] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In Research in
Security and Privacy, 1992. Proceedings., 1992 IEEE Computer

Society Symposium on, pages 72–84. IEEE, 1992.
[10] J. Bender, Ö. Dagdelen, M. Fischlin, and D. Kügler. The pace| aa

protocol for machine readable travel documents, and its security.
In Financial Cryptography, volume 7397, pages 344–358. Springer,
2012.

[11] BlackBerry Unlimited. Security Note, BlackBerry 10 Devices, 2016.
[12] B. Blanchet. Automatic verification of correspondences for security

protocols. Journal of Computer Security, 17(4):363–434, 2009.
[13] B. Blanchet et al. An efficient cryptographic protocol verifier based

on prolog rules. In csfw, volume 1, pages 82–96, 2001.
[14] B. Blanchet et al. Modeling and verifying security protocols with

the applied pi calculus and proverif. Foundations and Trends® in
Privacy and Security, 1(1-2):1–135, 2016.

[15] L. Chen and Q. Tang. Bilateral unknown key-share attacks in key
agreement protocols. J. UCS, 14(3):416–440, 2008.

[16] Entrust. Entrust TruePass™Product Portfolio Strong Authentication,

Digital Signatures and end-to-end encryption for the Web Portal.,
2003.

[17] O. Goldreich and Y. Lindell. Session-key generation using human
passwords only. In Annual International Cryptology Conference,
pages 408–432. Springer, 2001.

[18] F. Hao. On robust key agreement based on public key authentication.
In Financial Cryptography, volume 6052, pages 383–390. Springer,
2010.

https://github.com/nitrogl/speke-verification

12

[19] F. Hao and P. Y. Ryan. Password authenticated key exchange by
juggling. In International Workshop on Security Protocols, pages
159–171. Springer, 2008.

[20] F. Hao and S. F. Shahandashti. The speke protocol revisited. SSR,
14:26–38, 2014.

[21] D. Harkins. Simultaneous authentication of equals: a secure,
password-based key exchange for mesh networks. In Second
International Conference on Sensor Technologies and Applications,

2008 (SENSORCOMM’08), pages 839–844. IEEE, 2008.
[22] Standard specifications for password-based public-key cryptographic

techniques. Standard, Institute of Electrical and Electronics Engi-
neers, Inc., Sep 2006.

[23] Information technology - security techniques - key management -
part 4: Mechanisms based on weak secrets. Standard, International
Organization for Standardization, Geneva, CH, 2006.

[24] Information technology - security techniques - key management -
part 4: Mechanisms based on weak secrets. Standard, International
Organization for Standardization, Geneva, CH, 2017.

[25] D. P. Jablon. Strong password-only authenticated key exchange.
ACM SIGCOMM Computer Communication Review, 26(5):5–26,
1996.

[26] B. Jaspan. Dual-workfactor encrypted key exchange: Efficiently
preventing password chaining and dictionary attacks. In USENIX

Security Symposium, 1996.
[27] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated

key exchange using human-memorable passwords. In International

Conference on the Theory and Applications of Cryptographic Tech-

niques, pages 475–494. Springer, 2001.
[28] G. Lowe. A hierarchy of authentication specifications. In Computer

security foundations workshop, 1997. Proceedings., 10th, pages 31–
43. IEEE, 1997.

[29] M. D. Ryan and B. Smyth. Applied pi calculus. In V. Cortier and
S. Kremer, editors, Formal Models and Techniques for Analyzing

Security Protocols. IOS Press, 2011.
[30] D. R. Stinson. Cryptography: theory and practice. CRC press, 2005.
[31] Q. Tang and C. Mitchell. On the security of some password-based

key agreement schemes. Computational Intelligence and Security,
pages 149–154, 2005.

[32] T. Y. Woo and S. S. Lam. A semantic model for authentication
protocols. In Research in Security and Privacy, 1993. Proceedings.,
1993 IEEE Computer Society Symposium on, pages 178–194. IEEE,
1993.

[33] M. Zhang. Analysis of the speke password-authenticated key
exchange protocol. IEEE Communications Letters, 8(1):63–65, 2004.

	I Introduction
	II Background
	II-A Password Authenticated Key Exchange
	II-B The original SPEKE
	II-C Previous attacks
	II-D Specification in standards

	III New attacks
	III-A Impersonation attack
	III-B Key-malleability attack
	III-C Discussion on standards
	III-C1 Explicit key confirmation
	III-C2 Definition of shared secret

	IV Solution
	IV-A Patched SPEKE
	IV-B Improved key confirmation

	V Formal analysis
	V-A Reasoning in the Applied Pi Calculus in ProVerif
	V-B Modelling the SPEKE protocol
	V-C Security properties
	V-C1 Correctness
	V-C2 Secrecy of the pre-shared password
	V-C3 Implicit key authentication
	V-C4 Explicit key authentication
	V-C5 Weak and strong entity authentication
	V-C6 Perfect forward secrecy
	V-C7 Bilateral UKS
	V-C8 Impersonation attack
	V-C9 Sessions swap
	V-C10 Malleability

	VI Summary of results
	VII Conclusions
	References

